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Reactor/Accelerator Sector: {13}
CPT ⇒ invariant δ ↔ −δ

– Typeset by FoilTEX – 4

Atmospheric Neutrino Mass Hierarchy:

Solar neutrino mass hierarchy (mass ordering of nu1 & nu2) 
was determined by SNO !  

Mena + SP
hep-ph/0312131

defn: |Ue1|2 > |Ue2|2 > |Ue3|2

Neutrino Survival Probability: νe Revisited

NH: |∆m2
31| > |∆m2

32| (|∆31| > |∆32|)

IH: |∆m2
31| < |∆m2

32| (|∆31| < |∆32|) ∆ij ≡ ∆m2
ijL/4h̄cE

Using ∆ij ≡ ∆m2
ijL/4E (∆m2

ij ≡ m2
i−m2

j) and P! ≡ c4
13 sin2 2θ12 sin2 ∆21

P (νe → νe) = 1− P! − sin2 2θ13

[
c2
12 sin2 ∆31 + s2

12 sin2 ∆32

]

= 1− P!

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆̄ + φ̄)

}

where ∆̄ = 1
2(∆31 + ∆32) and φ̄ = arctan(cos 2θ12 tan∆21)

for small ∆21 ⇒ φ̄ = ∆21 cos 2θ12 + O(∆3
21)

Define φ ≡ arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12

then dφ
dL|L=0 = 0

thus φ doesn’t effect the atmospheric oscillation frequency at least for small L.

Rewrite cos(2∆̄ + φ̄) = cos(2∆ee + φ) then

∆ee ≡ 1
2
(∆31 + ∆32 + ∆21 cos 2θ21) = c2

12∆31 + s2
12∆32
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Mossbauer Neutrinos:

Mossbauer effect with Neutrinos in the 3H −3 He system:

Source: 3H → (3He + e−B) + ν̄e

Detector: ν̄e + (3He + e−B)→3 H

Q = 18.6 keV and Γ3H = 1.2× 10−24 eV

Various line broadening effects which significantly increase Γeff

Serious technical difficulties exist but it is not impossible (Raghaven, Potzel)

For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!
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For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!

Do Mossbauer Neutrinos Oscillate? YES

(Akhmedov, Kopp, Lindner 0802.2513, 0803.1424)

(see also Bilenky, Feilitzsch, Potzel )
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νe Disappearance

P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

−sin2 2θ13

[
cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

]

where ∆ij ≡
∆m2

ijL

4E (kinematic phase).

= 1− c4
13 sin2 2θ12 sin2 ∆21

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆̄ + φ̄)

}
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cos2 θ12 > sin2 θ12

• for Normal Hierarchy (NH): |∆31| > |∆32|

phase of atmospheric oscillation ADVANCES by 2π sin2 θ12

for every solar osc.

• for Inverted Hierarchy (IH): |∆31| < |∆32|

phase of atmospheric oscillation RETARDED by 2π sin2 θ12

for every solar osc.

– Typeset by FoilTEX – 3

 1875 

since ∆21 = ∆31 −∆32.
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out of phase by pi/2

in phase

in phase

cos2 θ12 > sin2 θ12

• for Normal Hierarchy (NH): |∆31| > |∆32|

phase of atmospheric oscillation ADVANCES by 2π sin2 θ12

for every solar osc.

• for Inverted Hierarchy (IH): |∆31| < |∆32|

phase of atmospheric oscillation RETARDED by 2π sin2 θ12

for every solar osc.

δm2
IH = 1.03× δm2

NH
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P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆ee ± φ)

}

NH (+) and IH (-):

∆ee ≡ ∆m2
eeL/4E

∆m2
ee = c2

12|∆m2
31| + s2

12|∆m2
32| = |m2

3 − (c2
12m

2
1 + s2

12m
2
2)|

solar osc. (first min 270m) atm osc. (first min 9m)
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FIG. 2: (a) φ! as function of ∆21. φ! = π/2 when ∆21 ≈ 1.9.(b) φ! as function of L for various

choices of the solar parameters within the current allowed region. φ! ≈ π/2 at about 350 m
somewhat independent of the precise values for the solar parameters.

wave evolves, whereas for the inverted hierarchy there is a phase retardation2. It is easy to
show that

φ!(∆21 + π) = φ!(∆21) + 2π sin2 θ12, (8)

i.e. the phase advancement (normal) or retardation (inverted) is 2π sin2 θ12 for every π
increase of ∆21. Eqs. (5) and (6) are the foundations of our investigation.

Some important observations are worth emphasizing immediately:

• Only ∆ee varies at the atmospheric scale. Everything else, including phase φ!, varies
at the solar scale. This is a useful distinction because these two scales differ by a factor
of ∼ 30.

• The difference between probabilities corresponding to the two hierarchies (3) is given
by

∆P
√

P (θ13 = 0)
= sin2 2θ13 sin 2∆ee sin φ! , (9)

to leading order in θ13. ∆P becomes visible when the phase φ! develops to order unity.
From Fig. 2 this occurs at around the first solar oscillation maximum, (∆21 = π/2), in
agreement with the features exhibited in Fig. 1. From (9) we also see that the normal
and the inverted hierarchies are maximally out of phase when φ! = π/2. This occurs
when

cot∆21 cot(∆21 cos 2θ12) = − cos 2θ12 . (10)

2 Equivalently, one could interpret this phenomena as a change in the instantaneous effective ∆m2
atm. This

interpretation is explored in Appendix A.
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Combining the Atm Osc:P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

−1
2

sin2 2θ13
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1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆ee ± φ)

}

NH (+) and IH (-):

∆ee ≡ ∆m2
eeL/4E

∆m2
ee = c2

12|∆m2
31| + s2
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32| = |m2

3 − (c2
12m

2
1 + s2

12m
2
2)|

νe weighted average of m2
1 and m2

2

φ! ≡ arctan(cos 2θ12 tan∆21)−∆21 cos 2θ12
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then dφ
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Strategy:

(I) Precision (<1%) measurement of δm2
ee

at L around 10 m

(II) determination of phase at L=350 m
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But this is after 20 or so oscillation !!!
What about smearing in the L/E?

(I) Precision (<1%) measurement of δm2
ee

at L around 10 m

(II) determination of phase at L=350 m

But this is after 20 or so oscillations !!!

What about smearing in L/E ? E ok, as ∆E/E ∼ 10−15
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FIG. 3: The averaged P (νe → νe) versus distance measured in number of oscillation lengths, L0.

To help with visualization P! = sin2 2θ12 cos4 θ13 sin2 ∆21 has been set to zero for these figures. (a)
0.1% Gaussian resolution on L/E. (b) 0.5% resolution on L/E. (c) 2% resolution on L/E. In (b)

the oscillations are reduced at 20 or so oscillations out, but still observable. Whereas in (c) the
oscillations are averaged out by 15 L0.

• The resolution on ∆m2
ee measured in a short baseline experiment (∼ L0/2 from the

source) must be #1% or less.

• The resolution on L/E for the long baseline experiment (∼ 20 L0 from the source)
must be #1% or less.

Usually, the neutrino energy cannot be determined experimentally with this accuracy, there-
fore, these preconditions are very difficult to meet, if not impossible.

C. Mass hierarchy reversal and comments on the reactor neutrino method

We have emphasized in the foregoing discussions importance of identifying the quantity
to be held fixed to define the mass hierarchy reversal, and proposed ∆m2

ee as the solution.
In this subsection we want to elaborate this point and clarify how the difference between
the normal and the inverted hierarchies can be made artificially larger by choosing different
variables to define the hierarchy reversal.

In Fig. 4, presented is the survival probability of electron anti-neutrinos at a baseline
of 50 km from a source which is averaged over the uncertainty of energy 3%/

√

E/MeV as
a function of neutrino energy E. It is shown in the left panel of Fig. 4 that if we hold
|∆m2

32| fixed in reversing the hierarchy from the normal to the inverted (as was done in [11])
the difference between the normal and the inverted hierarchies is clearly visible. However,
the obvious distinction seen in the left panel of Fig. 4 disappears if we use ∆m2

ee to hold
when switching between the hierarchies as shown in the middle panel of Fig. 4. A simple
explanation for such a marked difference is that by holding |∆m2

32| fixed in reversing the
hierarchy from the normal to the inverted one maps the neutrino mass spectrum into a
significantly different one, |∆m2

31|IH = |∆m2
31|NH−2∆m2

21. (See Appendix A for more about
it.) This artificially enhances the difference between the hierarchies, as demonstrated in
Fig. 4.

Despite that there exist some discrepancies at energies around 4 MeV, a peak energy of
signal events in reactor experiments, the two disappearance probabilities can be made very

8

Smearing L:

L

d d

hh L’

(I) Precision (<1%) measurement of δm2
ee

at L around 10 m

(II) determination of phase at L=350 m

But this is after 20 or so oscillations !!!

What about smearing in L/E ? E ok, as ∆E/E ∼ 10−15

d < L/200 and L′ = L(1 + 1
2

h2

L2) so h < L/10
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Mossbauer effect with Neutrinos in the 3H −3 He system:

Source: 3H → (3He + e−B) + ν̄e

Detector: ν̄e + (3He + e−B)→3 H

Q = 18.6 keV and Γ3H = 1.2× 10−24 eV

Various line broadening effects which significantly increase Γeff

Serious technical difficulties exist but it is not impossible (Raghaven, Potzel)

For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!

Do Mossbauer Neutrinos Oscillate? YES

(Akhmedov, Kopp, Lindner 0802.2513, 0803.1424)

(see also Bilenky, Feilitzsch, Potzel )
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Various line broadening effects which significantly increase Γeff

Serious technical difficulties exist but it is not impossible (Raghaven, Potzel)

For Γeff ∼ 10−11 eV (∆E/E ∼ 10−15) then σ ∼ 10−33cm2 !!!

Do Mossbauer Neutrinos Oscillate? YES

(Akhmedov, Kopp, Lindner 0802.2513, 0803.1424)

(see also Bilenky, Feilitzsch, Potzel )
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Phase I: Measurement of δm2
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Minakata and Uchinami: hep/0602046

• Run IIB = 10 point measurement at LOM/5, 3LOM/5, · · · 19LOM/5,

• each 106 events, σusys = 0.2%, σc = 10%

• sensitivity in δm2
ee ≈ 0.3

(
sin2 2θ13

0.1

)−1
%

Phase II: phase at 350 m
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Minakata and Uchinami: hep/0602046

• Run IIB = 10 point measurement at (1/5, 3/5, · · · 19/5)LOM

• 106 events each, σusys = 0.2%, σc = 10%

• Sensitivity in δm2
ee ≈ 0.3

(
sin2 2θ13

0.1

)−1
%

Phase II: phase at 350 m
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Phase I: Measurement of δm2
ee

(the atm δm2 near the first osc. minima for a ν̄e disapp. exp.)
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Minakata and Uchinami: hep/0602046

sensitivity in δm2
ee ≈ 0.3

(
sin2 2θ13

0.1

)−1
%

Phase II: phase at 350 m
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The feature of the second-phase experiment presented in the middle panels of Fig. 6
requires some explanations. First of all, there exist many isolated island-like allowed regions.
Suppose that θ13 is given from some other experiments. Then, due to the cosine term in
Eq. 5 the measurement will give a periodic solution

∆m′2
ee ≈ ∆m2

ee +
4nπE

L
, (n = ±1,±2, ...) (15)

for both of the hierarchies. If we take approximation φ" = π/2, there is a shift 2πE/L
between the adjacent ∆m2

ee solutions for the normal and the inverted hierarchies. Hence, the
solutions of ∆m2

ee are alternating in the normal and the inverted hierarchies with a constant
shift 2πE/L between the adjacent solutions, the feature clearly visible in the middle panels
of Fig. 6. The contours are prolonged along the sin2 2θ13 direction because the second phase
measurement alone can determine θ13 only with a limited accuracy.

It’s clear that the second phase alone can not determine neither the value of ∆m2
ee nor the

mass hierarchy. However, once the results of the first and the second phases are combined
all the fake solutions are eliminated, as demonstrated in the lower panels of Fig. 6. It is
evident that ∆m2

ee must be determined in a high accuracy in the first phase measurement.

250

300

350

400

450

500

550

600

650

335 340 345 350 355 360 365

FIG. 5: Plotted are the expected number of events to be collected by detectors placed at the

distances 340, 345, 350, 355 and 360 m from the source for ∆m2
ee = 2.5× 10−3 eV2 and sin2 2θ13 =

0.1 for the normal hierarchy, indicated by solid circles with error bars. Here P" is included (solar
parameters are fixed to their best fit values). Expected number of events in the absence of oscillation

is assumed to be 2000 at each detector position. The blue (light gray) solid curve which passes
through the data points indicates a theoretical expectation assuming the normal hierarchy with

∆m2
ee = 2.5 × 10−3 eV2 and sin2 2θ13 = 0.1 whereas the red (dark gray) curve off the data points

is the one of inverted hierarchy with same values of ∆m2
ee and θ13. Assuming that ∆m2

ee is known
to ±0.5% precision, the thick-dotted (thin-dotted) lines above and below the solid lines are the

expectations with ∆m2
ee 0.5% above (below) that value.
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FIG. 7: The region of sensitivity to resolving the mass hierarchy in sin2 2θ13−event number (per
detector) space. The black solid, the red dashed, and the blue dotted curves denote the region

boundary at 90%, 95%, and 99% CL, respectively. The left and right panel are for the case of
uncorrelated systematic uncertainties of 0.2% and 1%, respectively.

at 90 (99) % CL approximately independent of number of events larger than ∼ 1000. This
is caused by the fact that the precision on the determination of ∆m2

ee at the first phase is
highly dependent on this systematic uncertainty [17].

IV. DETERMINATION OF THE SOLAR PARAMETERS

In the second phase of the Mössbauer experiment, the detectors are placed just after the
first solar oscillation maximum in order to determine the mass hierarchy, as we discussed
in the previous section. In a possible third phase of the experiment, one could envisage
moving the detectors somewhat closer to the source in order to cover the region around this
maximum. It will allow us a precise determination of the solar-scale oscillation parameters,
∆m2

21 and θ12.
In order to optimize the determination of these parameters, we assume that the measure-

ments will be performed at the following 10 different detector locations,

Ln = [200 + 50 (n − 1)] m, (21a)

L′
n = Ln − L0/2, n = 1, 2, .., 5. (21b)

First, in order to observe the oscillation driven by the solar ∆m2
21, we consider the configu-

ration of 5 detector locations (Ln) separated by 50 m, ranging from 200 m to 400 m as in Eq.
(21a). In this way, we can cover the whole range of solar-scale oscillation before and after the
dip due to the oscillation maximum (see Fig. 1). Second, in order to minimize the unwanted
effect due to the rapid oscillations driven by the atmospheric ∆m2

ee, we have to place, for
each location Ln, another detector (or move detector to another location) at L′

n separated
from Ln by half the atmospheric oscillation length, L0/2. See Eq. (21b). The setting of five
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FIG. 6: The allowed regions in the sin2 2θ13−∆m2
ee plane obtained by the first phase alone (upper

panels), the second phase alone (middle panels) and the combined result of these two phases (lower
panels) for the case where the input parameters are sin2 2θ13 = 0.1, ∆m2

ee = 2.5 × 10−3 eV2

with the normal hierarchy, based on the χ2 analysis described in the next Sec. IIIB. The solar
parameters are fixed to their current best fit values. The first phase is assumed to be performed at
10 positions at around L ∼ 9 m following the run IIB in [17] whereas the second phase is assumed

to be performed at 5 locations at L = 350 ± (0, 5, 10) m from the source. The three closed curves
(red, blue, green) from inner to outer denote the ones obtained with 90% CL, 95% CL, and 99 %

CL.

B. Analysis method and definition of χ2

Now we give details of our analysis method. To calculate the sensitivity of the deter-
mination of the neutrino mass hierarchy by the first and second phases of the experiment
combined, we compute

∆χ2
min(sin

2 2θ13) = χ2
min(wrong hierarchy) − χ2

min(true hierarchy) , (16)

where χ2
min(true/wrong hierarchy) is the minimum of

χ2(true/wrong hierarchy) = χ2
1 + χ2

2(true/wrong hierarchy) , (17)
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Reactor Neutrinos:



Patrick Decowski / UC Berkeley

• In practice, only 1.5 neutrinos/fission detectable

• Calculated spectrum has been verified to 2% 
accuracy in past reactor experiments

Detected Reactor Spectrum

1.8MeV threshold in Inverse Beta Decay

No near detector necessary! 

Reactor  
from neutron rich 
fission fragments

Detected 
Spectrum

Cross section

νe + p → e
+

+ n
νe

Zacek G. et al., Phys. Rev. D34, 2621 (1986). 

C
o
u
n
ts

 [
M

eV
-1
 h

-1
]

Gösgen

Ee+ (MeV)
5

Reactor Neutrinos:  Mass Hierarchy

Detected Spectrum
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Learned, Dye, Pakvasa, and 
Svoboda, hep-ex/0612022

νe Disappearance

P (ν̄e → ν̄e) = 1− cos4 θ13 sin2 2θ12 sin2 ∆21

−sin2 2θ13

[
cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32

]

where ∆ij ≡
∆m2

ijL

4E (kinematic phase).

= 1− c4
13 sin2 2θ12 sin2 ∆21

−1
2

sin2 2θ13

{
1 +

√
(1− sin2 2θ12 sin2 ∆21) cos(2∆̄ + φ̄)

}
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Fourier Transforms:

dominant frequency

sub-dominant frequency
(1/5 the power)
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Fourier Transforms: Hanohano

dominant frequency

sub-dominant frequency
(1/5 the power)

NH:
shoulder at
smaller freq.

IH:
shoulder at
higher freq.

sin2 2θ13 > 0.05 for 10 Kton-yr

sin2 2θ13 > 0.02 for 100 Kton-yr
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Fourier Transforms: Hanohano

dominant frequency

sub-dominant frequency
(1/5 the power)

NH:
shoulder at
smaller freq.

IH:
shoulder at
higher freq.

sin2 2θ13 > 0.05 for 10 Kton-yr

sin2 2θ13 > 0.02 for 100 Kton-yr

also L. Zhan, Y. Wang, J. Cao and L. Wen, arXiv:0807.3203
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NH   v   IH :



NH   v   IH :

< 2 %



Hanohano

argument of the atm cosine term is

2∆ee ± φ! ≡ 1
2

∫ L/E

0
dρ δm2

eff(ρ)

δm2
eff(L/E) = δm2

ee ±
1
2

δm2
21 cos 2θ12

sin2 2θ12 sin2 ∆21

(1− sin2 2θ12 sin2 ∆21)
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Uncertainty in E scale ???
between 2 and 8 MeV !!!

+/-0.6%+/-2%

PIH(Eobs)− PNH(Etrue)
PNH(Etrue)

% (1)
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Eobs = Etrue + 0.015× (Etrue − 4.5)

Eobs = Etrue − 0.015× (Etrue − 4.5)

PIH(Eobs)− PNH(Etrue)
PNH(Etrue)

% (1)
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IH -> NHNH -> IH



Summary & Conclusions

The phase advancement or retardation of the atmospheric oscillation allows
for the possibly determination of the neutrino mass hierarchy in ν̄e disappearance
experiments:

• For monochromatic ν̄e beams this would require a high precision measurement
of δm2

atm around the first oscillation minimum as well as a determination of
the phase 20 or so oscillations out ! Challenging, but the high event rate
that maybe possible with Mossbauer neutrinos could make this possible with
modest size detectors.

• Reactor neutrinos using multi-cycle analyses (Fourier) requires high precision
relative determination of the neutrino energy from 2 to 8 MeV. What you
call a 6 MeV neutrino must have twice the energy of what you call a 3 MeV
to about 1%, otherwise the hierarchies can be confused. This requirement is
very challenging for a large detector.

– Typeset by FoilTEX – 11


